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A B S T R A C T : 
The increasing complexity of maritime risks and threats requires accurate and 
timely identification for environmental and human safety. Satellite observa-
tions enable comprehensive surveillance of large maritime areas, which is es-
sential for detecting and responding to environmental changes and potential 
threats. The Horizon Europe project EURMARS aims to develop and validate 
a multi-purpose observation platform to enhance detection capabilities for 
various risks and threats. This paper introduces a novel Earth Observation 
(EO) algorithm based on Object-Based Image Analysis (OBIA), employing a 
You Only Look Once (YOLO) -v9 model to process data from open-access sat-
ellites (Sentinel-1, Sentinel-2, Landsat 8, 9) and video from the microsatellite 
NEMO-HD. Automatic Identification System (AIS) data are used to ensure 
comprehensive monitoring and validate the method’s results. Satellite im-
agery with AIS data integration is a critical element of the vessel tracking 
methodology, significantly improving the accuracy and reliability of maritime 
surveillance. Real-life demonstrations have confirmed the method’s effective-
ness in enhancing maritime security and facilitating early detection and re-
sponse to threats. 
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1. Introduction 
1.1 Aim and Scope 
Monitoring and managing the maritime environment are crucial and challeng-
ing due to its vast size and continuously changing conditions.1 Traditional sur-
veillance methods, such as land-based or ship-based observation, often fail to 
provide comprehensive and timely data over wide areas. In contrast, remote 
sensing technologies, particularly satellite imagery, offer a powerful solution to 
these challenges by providing extensive coverage and efficiently capturing high- 
or medium-resolution data. The vessel detection using satellite imagery can be 
further enhanced by the transmitters’ data integration, which offers valuable 
information on vessels’ position and direction. The Automatic Identification Sys-
tem (AIS) is a widely used vessel tracking system that provides continuous loca-
tion updates.2  

When it comes to satellite imagery, both optical and Synthetic Aperture Ra-
dar (SAR) data are particularly effective for detecting vessels, offering improved 
accuracy and reliability in maritime surveillance.3 Regarding vessel detection in 
optical images, key factors affecting the results include the size of the detected 
objects and weather conditions. Vessels must cover a sufficient number of pix-
els in the image, depending on its spatial resolution, to be detected accurately. 
However, adverse weather conditions such as clouds or waves can hinder the 
detection capability.4 Additionally, the reflection of sunlight in the waves can 
create areas of high contrast in images, which can be misinterpreted as vessels.5 
On the other hand, SAR data is a reliable method for detecting vessels at sea, as 
they provide good results regardless of weather conditions. Moreover, larger 
vessels, being metallic structures, reflect more radar signals. However, SAR im-
ages can have high levels of noise and sensitivity in the air, which can prevent 
the accurate detection of vessels.6 In addition to the satellite imagery, the Slo-
venian microsatellite NEMO-HD enhances vessel detection with its high-resolu-
tion multispectral imagery and HD RGB video capabilities. Equipped with an ad-
vanced guidance, navigation, and control system, NEMO-HD can track non-lin-
ear paths, such as coastlines, or focus on a specific ground target for several 
minutes.7-8 Despite its high orbital velocity, NEMO-HD maintains orientation to-
wards a selected Earth area, enabling the recording of HD video. The ability to 
capture motion-tracked video from space introduces a new dimension to mari-
time traffic monitoring. 

This paper presents an integrated algorithm for processing EO data using 
OBIA for vessel detection in multispectral and SAR images and RGB video. The 
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algorithm includes the development of a component that collects satellite data, 
processes them, and finally performs vessel detection via YOLO-v9 model. The 
proposed end-to-end method and the technologies have been validated 
through the integration of data from AIS positioning systems and real-world ex-
periments, demonstrating their effectiveness in terms of rapid threat response 
and improved maritime security. 
1.2 Relative Literature Review 
Since the launch of the first optical and SAR satellites fifty years ago, the number 
of satellites capturing images of the Earth has increased significantly. These sat-
ellites are classified according to the spatial resolution of their images into four 
groups: very high, high, medium, and low resolution. Among those that provide 
open access to their data, Sentinel satellites offer high-resolution imagery, while 
Landsat satellites provide medium-resolution data.9  

Recent studies have focused on vessel detection using data from Sentinel-1 
10-18  

and Sentinel-2 19-23 satellites, often in combination with other data sources. For 
instance, in a study,2 Sentinel-1 data with AIS datasets were integrated, leading 
to the development of a database and web-based tool for detecting “dark ves-
sels”—vessels not transmitting AIS signals, potentially engaged in illegal activi-
ties. This tool visualizes detections from both data sources. Additionally, an-
other study 

6 proposed a Polarimetric Combination-based Ship Detection (PCSD) 
method to address challenges such as speckle noise in SAR data, achieving an 
overall detection rate of over 85 % and over 42 % for small vessels. Further ad-
vancements in vessel detection have been made using optical satellite imagery. 
An algorithm employing object detection techniques has been developed for 
identifying vessels under 20 meters in length, which typically lack AIS. This 
method has demonstrated the capability to detect vessels 8 meters in length.24 
A study demonstrated the importance of Landsat 8 using its visible and infrared 
bands to validate the proposed ship detection method, showing that its multi-
resolution images significantly increase the detection accuracy compared to 
classical methods.25 Another study developed a ship detection method using 
spectral and thermal fusion, with experiments on Landsat 8 data showing effec-
tive, clutter-resistant ship detection.26 

These advancements in satellite remote sensing technology and the integra-
tion of various data sources have significantly enhanced the accuracy and effi-
ciency of maritime monitoring and vessel detection. 

2. Methods 
2.1 Model Training 
Datasets Overview 
Optical Dataset 
Four publicly available optical datasets were used for the training, testing, and 
validation of the vessel detection model. The first dataset, the TGRS-HRRSD Da-
taset  

27 (Figure 1a) contains 21,761 images sourced from Google Earth and Baidu 
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Map. The second dataset is simply referred to as ship-detection.28 The third da-
taset, namely Ship Detection from Aerial Images,29 consists of 621 images spe-
cifically for ship detection, and the fourth, Ships in Google Earth,30 comprises 
794 images obtained from Google Earth, which are split into two groups—train-
ing and testing. All these datasets are openly accessible and contain optical im-
ages of vessels, providing a robust foundation for training the optical detection 
model.  

SAR Dataset 
In addition to optical data, a SAR image dataset  

31 was also used to train and test 
the detection model. This dataset includes a labelled collection of 102 images 
from the Chinese Gaofen-3 satellite (Figure 1b) and 108 images from Sentinel-
1, both of which were cropped into smaller 256x256 pixel segments, resulting 
in a total of 39,729 image chips.  

(a) (b) 

Figure 1: Sample images from (a) TGRS-HRRSD optical dataset and (b) Chinese Gaofen-
3 and Sentinel-1 datasets. 

YOLOv9 
In recent years, deep learning models have significantly outperformed older AI 
systems in areas such as object detection, language processing, and speech 
recognition, thanks to advances in architectures such as Convolutional Neural 
Networks (CNNs), transformers, and perceptrons.32 Research is increasingly fo-
cused on enhancing learning methods and optimising model training, including 
improving loss functions and label assignment.33 Traditional approaches often 
overlook information loss, leading to prediction inaccuracies. Early deep learn-
ing models like R-CNN and Faster R-CNN used a two-step process: locating and 
classifying objects.34 While accurate, they were too slow for real-time applica-
tions, processing only about 7 frames per second (fps). In contrast, one-step 
models like YOLO predict both object location and category simultaneously, 
achieving speeds around 45 fps in the original YOLO and up to 140 fps in newer 
versions like YOLOv5.35 This efficiency enables near-real-time detection of ves-
sels in radar images, which is crucial for maritime surveillance. Given the proven 
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effectiveness of YOLO models for real-time detection, such as improved identi-
fication and localization of exact positions and targets,36 we have chosen to im-
plement YOLOv9-E, fine-tuned for our vessel detection model. In comparison 
with relative publications,32,37 it has been proven to be improved in many as-
pects as it needs fewer parameters and calculations and also has a significant 
improvement in Average Precision (AP). 

Parameters Selection 
Several parameters were meticulously selected to optimize performance when 
applying the YOLO-v9 model for vessel detection. The batch size was deter-
mined based on hardware capabilities equal to 6, which required 25.6 GB of 
graphics memory, demonstrating the relationship between batch size and hard-
ware resources - larger batch sizes can speed up training but require more GPU 
memory. Hyperparameter tuning was conducted through hyperparameter evo-
lution to enhance the model’s performance. Validation was used for this hy-
perparameter evolution and model evaluation after each epoch, utilizing 10% 
of the total dataset, and ensuring that no images from the training or test da-
tasets were included. While most hyperparameters, such as image size and 
epochs, were set to default values, the image size for the SAR vessel detection 
dataset was specifically adjusted to 256x256 pixels due to the resolution limita-
tions of the dataset. The training environment was equipped with robust hard-
ware, including an CPU AMD Ryzen 7 5800X 8-core processor, 32 GB of DDR4 
3200MHz RAM, and an NVIDIA GeForce RTX 3090 with 24 GB GPU, ensuring 
efficient computations. YOLO-v9 employs a composite loss function that com-
bines components for bounding box regression, object classification, and confi-
dence score prediction, ensuring precise localization and accurate detection. 
The test dataset, also comprising 10% of the total data, was used to evaluate 
the model’s performance every 100 epochs to determine convergence. This test 
set did not overlap with the training or validation datasets. If no improvement 
was observed on this test dataset, the training process was halted, signifying 
that the model had converged. 

Performance Metrics 
The model was trained and tested using 90% of the dataset. After repeating the 
training and testing process multiple times, the model with the best perfor-
mance across all iterations was selected for final validation. To evaluate its ef-
fectiveness during both the training and testing phases, several key metrics 
were used, such as precision, recall, F1 score, and mean average precision 
(mAP). These metrics assessed various aspects of the model, such as how accu-
rately the bounding box captures the detected object, the probability of an ob-
ject being correctly identified in a specific area, the precision of the detection, 
the percentage of correct predictions, and the overall model’s performance. 
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2.2 Component development 
The component developed in this study for vessel detection operates through 
several critical steps. First, it searches for new image products by continuously 
searching the Copernicus and USGS Earth Explorer product catalogue within a 
predefined area of interest for Sentinel-1, Sentinel-2, and Landsat 8,9 images. 
This search is performed on a ten-minute basis. An API facilitates the image ac-
quisition process by allowing users to browse available products based on sev-
eral parameters such as sensor type, product layer, area of interest, cloud cov-
erage, and acquisition date. 

Once an image is detected, the algorithm automatically downloads it and per-
forms a series of preprocessing steps to optimize it for the detection step. These 
preprocessing steps are essential to ensure data quality and include subset 
cropping of images, noise reduction, masking to highlight the area of interest, 
and applying spectral or geometric transformations to prepare the image for 
accurate vessel detection. Preprocessing of SAR images (Figure 2a) was fully im-
plemented using SNAP software, whereas for optical images (Figure 2b), steps 
1-3 were processed in SNAP, while the remaining steps were developed manu-
ally. 

 

  
(a) (b) 

Figure 2: Workflow of the image dataset preprocessing (a) SAR, (b) optical imagery. 

After the preprocessing, the SAR image has GeoTiff format with SigmaVV and 
SigmaVH bands. The VV and VH bands are read, and outliers are removed (after 
some testing, keeping the values of 0.01 to 0.1 removes most of the sea noise 
and enhances the vessel’s footprint), after that the values are stretched to a 
range of 0-255 and with these values a grayscale PNG image is created with the 
help of the library rasterio. In accordance with the SAR image, the optical image 
has a format of GeoTiff with RGB bands. The RGB bands are read, and outliers 
are removed; the values are stretched to a range of 0-255, and with these values 
an RGB PNG image is created with the help of the library rasterio. 



EURMARS: Use of Satellite Imagery for Maritime Mapping in Large Areas 
 

 155 

Although the YOLO-v9 model was trained and tested on very high-resolution 
images, the algorithm was implemented on high- and medium-resolution im-
ages. However, adjustments were made to ensure high training accuracy with-
out negatively impacting the results, including procedures such as scale invari-
ance and data augmentation. Specifically, for scale invariance, the model was 
trained using images where the detected object’s bounding box occupied 10% 
or less of the image area. If it covered more than 10 % of the image, the image 
was discarded from the training dataset. 

The vessel detection process involved generating bounding boxes around the 
identified vessels, each characterized by a confidence level. The approach for 
detecting vessels varied slightly between optical and SAR images.  

The algorithm was fully developed in Python 3.10 within the Visual Studio 
code environment. The libraries employed for processing include Or, Tarfile, 
dotenv, Numpy, Rasterio, SnapPy, Geopandas, PIL, SQLAlchemy, and OpenCV. 
These libraries facilitated the handling of satellite image data and the genera-
tion of accurate vessel detection results. 

2.3 Application on Sentinel, Landsat, and NEMO-HD data 
Ιn the scope of the project, the developed algorithm was applied to satellite 
data from Sentinel-1, Sentinel-2, Landsat 8-9, and to the microsatellite NEMO-
HD data to evaluate its performance in real-world scenarios. Sentinel-1, 
launched in 2014, captures Synthetic Aperture Radar (SAR) images with a spatial 
resolution of up to 5 meters, providing high-quality data irrespective of weather 
conditions or time of day.38 Sentinel-2, on the other hand, offers multispectral 
optical observations across 13 spectral bands with a spatial resolution of up to 
10 meters, making it suitable for applications such as land cover change detec-
tion, coastal monitoring, emergency response, and maritime surveillance.39 
Landsat 8 and 9 continue the Landsat program’s legacy, which began in 1972, 
providing moderate spatial resolution in global, synoptic, and repetitive Earth 
surface coverage. These satellites enable the detection and monitoring of both 
natural and human-induced changes over time.40 The NEMO-HD microsatellite 
provides high-resolution video in the visible spectrum, with a spatial resolution 
of 2.8 x 2.8 meters and a ground footprint of 3x5 kilometers. The video can be 
acquired globally, and when the Area of Interest (AOI) is within range of the 
ground station in Slovenia, it can be transmitted in real-time. For AOIs beyond 
this range, the video is stored onboard and transmitted during the next contact 
with the ground station, ensuring timely access to critical information.41 This 
combination of datasets allowed for comprehensive testing and validation of 
the algorithm while demonstrating its effectiveness in diverse real-world mari-
time monitoring scenarios.  
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3. Results 
3.1 Performance and Score 
To illustrate the performance of the YOLO-v9 model’s training (Figure 3a) and 
testing (Figure 3b) in vessel detection, several diagrams created represent the 
evolution of the loss function, broken down into its components: box loss, total 
loss, and class loss. These plots provide insight into how the model’s predictions 
improve during the epochs, with each loss function representing different as-
pects of the bounding box prediction and object classification. 

  
(a)                                                                (b) 

Figure 3: Loss function diagrams for (a) training phase and (b) testing phase. 

The evaluation of training results for both optical and SAR images was con-
ducted using several metrics. Figure 4 and Figure 5 illustrate the model’s per-
formance over 300 epochs.  

 

 
Figure 4: Training evaluation metrics of optical images 

 
Figure 5: Training evaluation metrics of SAR images. 

In addition, confidence plots, including accuracy, recall and F1 score curves, 
illustrate the model’s ability to detect vessels at various confidence levels. These 
diagrams contribute to the evaluation of model performance, both for training 
(Figure 6) and testing (Figure 7), as precision measures the quality of positive 
predictions, recall indicates the model’s ability to detect true positives, and the 
F1 score balances both. 
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Figure 6: Confidence plots for training phase. 

    

Figure 7: Confidence plots for the testing phase. 

Figure 8a displays the prediction accuracy in the optical images during the 
model’s testing with a true positive rate of 75 % for the “ship” class, while 25 % 
of the predictions were falsely classified as “background.” Additionally, in Figure 
8b the confusion matrix shows the testing prediction accuracy for vessels in the 
SAR images. The model attained a true positive rate of 95% for the “ship” class, 
while 5% of the predictions were falsely classified as “background.” Vessel de-
tection results are shown in Figure 9 (a-c). 

 

 
(a) 

 
(b) 

Figure 8: Confusion matrix for model testing for vessel detection in (a) optical images 
and (b) SAR images. 

3.2 Demonstration of the Pilot Use Case 
As part of the EURMARS project, demonstration experiments were performed 
to assess and validate the developed methods and technologies in real-time 
conditions, with the primary objective of leveraging multiple sensors for sea ob-
ject detection via data fusion. This study specifically focused on merging satel-
lite imagery and AIS data to improve detection accuracy at sea. 
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(a) (b) (c) 

Figure 9: Application of vessel detection algorithm on (a) Sentinel-2 image, (b) Senti-
nel 1 image, (c) NEMO HD video. 

The first demonstration took place in Varna, Bulgaria, in April 2024. On the 
first day, the Sentinel-2 satellite passed over the area of interest, followed by 
the NEMO-HD satellite the next day. Although both the satellite images and 
video experienced dense cloud coverage (approximately 90%), the area of in-
terest had only light cloud coverage (Figure 10a). For the Sentinel-2 image, the 
results indicated one true positive and two false positive detections (Figure 
10b), primarily due to the dense cloud coverage, where small clouds were mis-
identified as vessels. The NEMO-HD satellite captured a one-minute video over 
this area and was able to detect one vessel in a duration of 8 seconds with a 
confidence >0.025 (Figure 11). The detection bounding boxes in both cases in-
cluded the image’s metadata, such as detection time, vessel coordinates, and 
object dimensions. 

 

 
(a) 

 
(b) 

Figure 10: (a) Sentinel-2 image (b) Detections on Sentinel-2 image. 

    
Figure 11: Detections on NEMO-HD video frames. 

To validate the detection results, vessel positions were recorded using two 
methods (Figure 12a). First, an AIS antenna was installed in the Varna region to 
capture and transmit vessel position signals (Figure 12b). Additionally, GNSS 
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tracker devices were given to the vessels and recorded their position (Figure 
12c).  

 

 
(a) 

 
(b) 

 
(c) 

Figure 12: (a) Two vessels appeared on the image; (b) Vessel 1 position with AIS;  
(c) Vessel 2 position with GNSS tracker. 

A noted issue with detected vessels is that the algorithm occasionally misi-
dentifies the wake of a moving vessel as part of the vessel, leading to an over-
estimation of its size. Additionally, when two vessels are close to one another, 
one vessel may be incorrectly assigned to the bounding box of the other, caus-
ing both to be represented in a single box. Integrating AIS data can enhance 
accuracy by offering additional information to differentiate between overlap-
ping or closely spaced vessels, thereby improving detection results. 

4. Discussion 
In this article, an algorithm for vessel detection integrating optical and SAR sat-
ellite imagery with AIS data is presented, automating the entire process from 
image retrieval to vessel detection and ensuring a continuous workflow without 
requiring user intervention. Initially, the vessel detection algorithm automates 
the search and acquisition of satellite images, followed by preprocessing to im-
prove image quality. It then detects vessels within these images. The model ex-
hibits high accuracy during the validation phase, achieving a true positive rate 
of 75 % for optical images and 95 % for SAR images. Notably, the model per-
forms better with SAR images, which may be attributed to the greater diversity 
of testing samples for optical images. Compared with relevant works  

42,43 where 
YOLO models were used for vessel detection, our model performs adequately, 
given the weather conditions that may affect the detection of vessels at sea.  

The integration of satellite images with AIS data is crucial for verifying vessel 
positions. The possibility of identifying mismatches between AIS data and satel-
lite detections enhances the accuracy and consistency of vessel identification 
significantly, reducing ambiguity and uncertainty in vessel positions and saving 
time. 

The implementation in real-world experiments within the EURMARS project 
exemplifies a robust approach to evaluating maritime object detection fusion 
techniques. The integration of various sensors, including satellite imagery and 
AIS data, underscores the importance of cross-referencing multiple data 
sources to improve detection accuracy. The demonstration in Varna highlighted 
the challenges and successes of the project. Validation with AIS data and GNSS 
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trackers ensured accurate verification, though issues such as detecting vessel 
wakes and merging close-range vessels into a single bounding box indicate areas 
for improvement. These findings reinforce the value of real-time, multi-sensor 
data fusion in maritime surveillance and highlight the need for further refine-
ment of the EURMARS project’s vessel detection algorithm. 

5. Conclusion and Future Work  
In this paper, we introduced our work developed under the Horizon Europe pro-
ject EURMARS, in which maritime object detection, more specifically – vessel 
detection, was performed. A framework in which YOLO-v9 was exploited for ob-
ject detection integrates image acquisition, preprocessing, vessel detection, 
and result outputs for the purpose, based on both optical multispectral images 
and SAR images. Four maritime datasets were used to fine-train the YOLO-v9 
models for optical images from a number of remote sensing satellites, whilst 
one dataset was employed for SAR images from two satellites. Validation and 
testing results have shown that the developed algorithm can achieve excellent 
vessel detection accuracy of 75 % and 95 % for optical images and SAR images, 
respectively. In the demonstration testing, Sentinel-2 images and NEMO-HD 
video were captured in experiments associated with AIS. With more demonstra-
tions throughout the EURMARS project, we will further explore the robustness 
of the developed algorithm and enhance its resilience to deal with different sce-
narios in maritime environments. For vessel detection models, valuable training 
data may be generated from the targeted satellites to increase the detection 
accuracy. We may also consider modifying the model architectures to fit better 
for maritime object detection in light of scenarios with more tests in real condi-
tions.  
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