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1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation
and processing. Belief functions enable representation ofincomplete and uncertain
knowledge, belief updating and combination of evidence. Belief functions were origi-
nally introduced as a principal notion of Dempster-Shafer Theory (DST) or the Math-
ematical Theory of Evidence [12].

For a combination of beliefs Dempster’s rule of combinationis used in DST. Un-
der strict probabilistic assumptions, its results are correct and probabilistically inter-
pretable for any couple of belief functions. Nevertheless these assumptions are rarely
fulfilled in real applications. It is not uncommon to find examples where the assump-
tions are not fulfilled and where results of Dempster’s rule are counter-intuitive, e.g.
see [1, 2, 13], thus a rule with more intuitive results is required in such situations.

Hence, a series of modifications of Dempster’s rule were suggested and alterna-
tive approaches were created. The classical ones are Duboisand Prade’s rule [9] and
Yager’s belief combination rule [15]. Others include a wideclass of weighted oper-
ators [11], the Transferable Belief Model (TBM) using the so-called non-normalized
Dempster’s rule [14], disjunctive (or dual Demspter’s) rule of combination [4, 8], com-
bination ’per elements’ with its special case — minC combination, see [3, 5], and
other combination rules. It is also necessary to mention themethod for application of
Dempster’s rule in the case of partially reliable input beliefs [10].
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A brand new approach performs the Dezert-Smarandache (or Demspter-Shafer
modified) theory (DSmT) with its DSm rule of combination. There are two main dif-
ferences: 1) mutual exclusivity of elements of a frame of discernment is not assumed in
general; mathematically it means that belief functions arenot defined on the power set
of the frame, but on a so-called hyper-power set, i.e., on theDedekind lattice defined by
the frame; 2) a new combination mechanism which overcomes problems with conflict
among the combined beliefs and which also enables a dynamic fusion of beliefs.

As the classical Shafer’s frame of discernment may be considered the special case
of a so-called hybrid DSm model, the DSm rule of combination is compared with the
classic rules of combination in the publications about DSmT[7, 13].

Unfortunately, none of the classical combination rules hasbeen formally general-
ized to hyper-power sets, thus their comparison with the DSmrule is not fully objective
until now.

The present paper brings a formal generalization of the classical Dempster’s, Dubois-
Prade’s, and Yager’s rules to hyper-power sets. These generalizations perform a solid
theoretical background for a serious objective comparisonof the DSm rule with the
classical combination rules.

The classic definitions of Dempster’s, Dubois-Prade’s, andYager’s combination
rules are briefly recalled in Section 2 and basic notions of DSmT (Dedekind lattice,
hyper-power set, DSm models, and DSm rule of belief combination) in Section 3.

A generalization of Dempster’s rule is presented in Section4, and a generalization
of Yager’s rule in Section 5. Both these classic rules are straightforwardly generalized
as their ideas work on hyper-power sets simply without any problem.

More interesting and more complicated is the case of Dubois-Prade’s rule. The
nature of this rule is closer to DSm rule, but on the other handthe generalized Dubois-
Prade’s rule is not compatible with a dynamic fusion in general. It works only for
a dynamic fusion without non-existential constraints, whereas a further extension of
the generalized rule is necessary in the case of a dynamic fusion with non-existential
constraints.

Section 7 presents a brief comparison of the rules and open problems for a future
research. A concluding section follows.

2 Classic definitions

All the classic definitions assume an exhaustive finiteframe of discernmentΘ =
{θ1, ..., θn}, whose elements are mutually exclusive.

A basic belief assignment (bba)is a mappingm : P(Θ) −→ [0, 1], such that∑
A⊆Θ m(A) = 1, the values of bba are calledbasic belief masses (bbm). The value

m(A) is called thebasic belief mass (bbm) ofA.1 A belief function (BF)is a mapping

1m(∅) = 0 is often assumed in accordance with Shafer’s definition [12].A classic counter example is
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Bel : P(Θ) −→ [0, 1], bel(A) =
∑

∅6=X⊆A m(X), belief functionBel uniquely
corresponds to bbam and vice-versa.P(Θ) is often denoted also by2Θ. A focal
elementis a subsetX of the frame of discernmentΘ, such thatm(X) > 0. If a focal
element is a one-element subset ofΘ, we are referring to asingleton.

Let us start with the classic definition of Dempster’s rule.Dempster’s (conjunctive)
rule of combination⊕ is given as
(m1 ⊕ m2)(A) =

∑
X,Y ⊆Θ, X∩Y =A Km1(X)m2(Y ) for A 6= ∅, whereK = 1

1−κ ,
κ =

∑
X,Y ⊆Θ, X∩Y =∅ m1(X)m2(Y ), and (m1 ⊕ m2)(∅) = 0, see [12]; putting

K = 1 and (m1 ⊕ m2)(∅) = κ we obtain thenon-normalized conjunctive rule of
combination∩©, see e. g. [14].

Yager’s rule of combinationY©, see [15], is given as
(m1 Y©m2)(A) =

∑
X,Y ⊆Θ, X∩Y =A m1(X)m2(Y ) for ∅ 6= A ⊂ Θ,

(m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +
∑

X,Y ⊆Θ, X∩Y =∅ m1(X)m2(Y ),
and(m1 Y©m2)(∅) = 0;

Dubois-Prade’s rule of combinationDP© is given as
(m1DP©m2)(A) =∑

X,Y ⊆Θ, X∩Y =A m1(X)m2(Y ) +
∑

X,Y ⊆Θ, X∩Y =∅,X∪Y =A m1(X)m2(Y )

for ∅ 6= A ⊆ Θ, and(m1DP©m2)(∅) = 0, see [9].

3 Introduction to the DSm theory

Because DSmT is a new theory which is in permanent dynamic evolution, we have to
note that this text is related to its state described by formulas and text presented in the
basic publication on DSmT — in the book [13]. Rapid development of the theory is
demonstrated by announcement of the second book on DSmT.

3.1 Dedekind lattice, basic DSm notions

Dempster-Shafer modified Theory or Dezert-Smarandache Theory (DSmT) by Dez-
ert and Smarandache [7, 13] allows mutually overlapping elements of a frame of
discernment. Thus, a frame of discernment is a finite exhaustive set of elements
Θ = {θ1, θ2, ..., θn}, but not necessarily exclusive in DSmT. As an example, we can
introduce a three-element set of colours{Red,Green,Blue} from the DSmT home-
page2. DSmT allows that an object can have 2 or 3 colours at the same time: e.g. it
can be both red and blue, or red and green and blue in the same time, it corresponds to
a composition of the colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functions defined analogically to
the classic Dempster-Shafer theory (DST), but they are defined on a so-called hyper-
power set or Dedekind lattice instead of the classic power set of the frame of discern-

Smets’ Transferable belief model (TBM) which admits positivem(∅) as it assumesm(∅) ≥ 0.
2www.gallup.unm.edu/∼smarandache/DSmT.htm
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ment. To be distinguished from the classic definitions, theyare called generalized basic
belief assignments and generalized basic belief functions.

The Dedekind lattice, more frequently calledhyper-power setDΘ in DSmT, is
defined as the set of all composite propositions built from elements ofΘ with union
and intersection operators∪ and∩ such that∅, θ1, θ2, ..., θn ∈ DΘ, and ifA,B ∈ DΘ

then alsoA∪B ∈ DΘ andA∩B ∈ DΘ, no other elements belong toDΘ (θi ∩θj 6= ∅
in general,θi ∩ θj = ∅ iff θi = ∅ or θj = ∅).

Thus the hyper-power setDΘ of Θ is closed to∪ and∩ and θi ∩ θj 6= ∅ in
general. Whereas the classic power set2Θ of Θ is closed to∪, ∩ and complement, and
θi ∩ θj = ∅ for everyi 6= j.

Examples of hyper-power sets. LetΘ = {θ1, θ2}, we haveDΘ = {∅, θ1 ∩
θ2, θ1, θ2, θ1 ∪ θ2}, i.e. |DΘ| = 5. Let Θ = {θ1, θ2, θ3} now, we haveDΘ =
{α0, α1, ...α18}, whereα0 = ∅, α1 = θ1∩θ2∩θ3, α2 = θ1∩θ2, α3 = θ1∩θ3, ..., α17 =
θ2 ∪ θ3, α18 = θ1 ∪ θ2 ∪ θ3, i.e.,|DΘ| = 19 for |Θ| = 3.

A generalized basic belief assignment (gbba)m is a mappingm : DΘ −→ [0, 1],
such that

∑
A∈DΘ m(A) = 1 andm(∅) = 0. The quantitym(A) is called thegen-

eralized basic belief mass (gbbm) ofA. A generalized belief function (gBF)Bel is a
mappingBel : DΘ −→ [0, 1], such thatBel(A) =

∑
X⊆A,X∈DΘ m(X), generalized

belief functionBel uniquely corresponds to gbbam and vice-versa.

3.2 DSm models

If we assume a Dedekind lattice (hyper-power set) accordingto the above definition
without any other assumptions, i.e., all elements of an exhaustive frame of discernment
can mutually overlap themselves, we refer to thefree DSm modelMf (Θ), i.e., about
the DSm model free of constraints.

In general it is possible to add exclusivity or non-existential constraints into DSm
models, we speak abouthybrid DSm modelsin such cases.

An exclusivity constraintθ1 ∩ θ2
M1
≡ ∅ says that elementsθ1 andθ2 are mutually

exclusive in modelM1, whereas both of them can overlap withθ3. If we assume

exclusivity constraintsθ1 ∩ θ2
M2
≡ ∅, θ1 ∩ θ3

M2
≡ ∅, θ2 ∩ θ3

M2
≡ ∅, another exclusivity

constraint directly follows them:θ1 ∩ θ2 ∩ θ3
M2
≡ ∅. In this case all the elements of

the 3-element frame of discernmentΘ = {θ1, θ2, θ3} are mutually exclusive as in the
classic Dempster-Shafer theory, and we call such hybrid DSmmodel asShafer’s model
M0(Θ).

A non-existential constraintθ3
M3
≡ ∅ brings additional information about a frame

of discernment saying thatθ3 is impossible; it forces all the gbbm ofX ⊆ θ3 to be
equal to zero for any gbba in modelM3. It represents a sure meta-information with
respect to generalized belief combination which is used in adynamic fusion.

In a degenerated case of thedegenerated DSm modelM∅ we always havem(∅) =
1, m(X) = 0 for X 6= ∅. It is the only case wherem(∅) > 0 is allowed in DSmT.



50 A Generalization of the Classic Combination Rules to DSm Hyper-power Sets

The total ignorance onΘ is the unionIt = θ1 ∪ θ2 ∪ ... ∪ θn. ∅ = {∅M, ∅},
where∅M is the set of all elements ofDΘ which are forced to be empty through the
constraints of the modelM and∅ is the classic empty set3. For a given DSm model

we can define (in addition to [13])ΘM = {θi|θi ∈ Θ, θi 6∈ ∅M}, ΘM
M
≡ Θ, and

IM =
⋃

θi∈ΘM
θi, i.e. IM

M
≡ It, IM = It ∩ ΘM, IM∅

= ∅.

3.3 The DSm rule of combination

Theclassic DSm rule DSmCis defined on the free DSm models as it follows4:
mMf (Θ)(A) = (m1 #©m2)(A) =

∑
X,Y ∈DΘ, X∩Y =A m1(X)m2(Y ).

SinceDΘ is closed under operators∩ and∪ and all the∩s are non-empty, the classic
DSm rule guarantees that(m1 #©m2) is a proper generalized basic belief assignment.
The rule is commutative and associative. For n-ary version of the rule see [13].

When the free DSm modelMf (Θ) does not hold due to the nature of the problem
under consideration, which requires us to take into accountsome known integrity con-
straints, one has to work with a proper hybrid DSm modelM(Θ) 6= Mf (Θ). In such
a case, thehybrid DSm rule of combination DSmHbased on the hybrid modelM(Θ),
Mf (Θ) 6= M(Θ) 6= M∅(Θ), for k ≥ 2 independent sources of information is defined
as:mM(Θ)(A) = (m1 #©m2 #©...#©mk)(A) = φ(A)[S1(A) + S2(A) + S3(A)], where
φ(A) is acharacteristic non-emptiness functionof a setA, i. e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise.S1 ≡ mMf (Θ), S2(A), andS3(A) are defined for two sources
(for n-ary versions see [13]) as it follows:
S1(A) =

∑
X,Y ∈DΘ, X∩Y =A m1(X)m2(Y ),

S2(A) =
∑

X,Y ∈ ∅, [U=A]∨[(U∈ ∅)∧(A=It)]
m1(X)m2(Y ),

S3(A) =
∑

X,Y ∈DΘ, X∪Y =A, X∩Y ∈ ∅ m1(X)m2(Y ) with U = u(X)∪ u(Y ), where
u(X) is the union of all singletonsθi that composeX andY ; all the setsA,X, Y are
supposed to be in some canonical form, e.g. CNF. Unfortunately no mention about the
canonical form is included in [13].S1(A) corresponds to the classic DSm rule on the
free DSm modelMf (Θ); S2(A) represents the mass of all relatively and absolutely
empty sets in both the input gbbas, which arises due to non-existential constraints and
is transferred to the total or relative ignorance; andS3(A) transfers the sum of masses
of relatively and absolutely empty sets, which arise as conflicts of the input gbbas, to
the non-empty union of input sets.

The hybrid DSm rule generalizes the classic DSm rule to be applicable to any DSm
model. The hybrid DSm rule is commutative but not associative. It is the reason the
n-ary version of the rule should be used in practical applications. For the n-ary version
of Si(A), see [13].

3 ∅ should be∅M extended with the classic empty set∅, thus more correct should be the expression
∅ = ∅M ∪ {∅}.

4To distinguish the DSm rule from Dempster’s rule, we use#© instead of⊕ for the DSm rule in this text.
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4 A generalization of Dempster’s rule

Let us assume all elementsX from DΘ to be in CNF in the rest of this contribution,
unless another form ofX is explicitly specified. Let us also assume non-degenerated
hybrid DSm models, i.e.,ΘM 6= ∅, IM /∈ ∅M. Let us denote∅ = ∅M ∪ {∅}, i.e.
set of set of all elements ofDΘ which are forced to be empty trough the constraints of
DSm modelM extended with classic empty set∅, hence we can writeX ∈ ∅ for all

X
M
≡ ∅ including∅.
The classic Dempster’s rule puts belief massm1(X)m2(Y ) to X ∩ Y (the rule

adds it to(m1 ⊕ m2)(X ∩ Y )) whenever it is non-empty, otherwise the mass is nor-
malized. In the free DSm model all the intersections of non-empty elements are always
non-empty, thus no normalization is necessary and Dempster’s rule generalized to the
free DSm modelMf (Θ) coincides with the classic DSm rule:(m1 ⊕ m2)(A) =∑

X,Y ∈DΘ, X∩Y =A m1(X)m2(Y ) = (m1 #©m2)(A).
Hence, Dempster’s rule generalized to the free DSm model is defined for any couple
of belief functions.

Empty intersections can appear in a general hybrid model dueto the model’s con-
straints, thus the normalization should be used.

Thegeneralized Dempster’s rule of combination⊕ is given as

(m1 ⊕ m2)(A) =
∑

X,Y ∈DΘ, X∩Y ≡A

K m1(X)m2(Y )

for ∅ 6= A ∈ DΘ
M, whereK = 1

1−κ , κ =
∑

X,Y ∈DΘ, X∩Y ∈ ∅ m1(X)m2(Y ), and
(m1 ⊕ m2)(A) = 0 otherwise, i.e., forA = ∅ and forA /∈ DΘ

M.

Similarly to the classic case, the generalized Demspter’s rule is not defined in fully
contradictive cases5 in hybrid DSm models, i.e. wheneverκ = 1. Specially the gen-
eralized Dempster’s rule is not defined (and it cannot be defined) on the degenerated
DSm modelM∅.

To be easily comparable with the DSm rule, we can rewrite the definition of the
generalized Dempster’s rule to the following equivalent form: (m1 ⊕ m2)(A) =
φ(A)[S⊕

1 (A)+S⊕
2 (A)+S⊕

3 (A)], whereφ(A) is acharacteristic non-emptiness func-
tion of a setA, i. e. φ(A) = 1 if A /∈ ∅ andφ(A) = 0 otherwise,S⊕

1 (A), S⊕
2 (A), and

S⊕
3 (A) are defined by

S⊕
1 (A) = S1(A) =

∑
X,Y ∈DΘ, X∩Y ≡A m1(X)m2(Y ),

S⊕
2 (A) = S1(A)

P

Z∈DΘ Z /∈ ∅
S1(Z)

∑
X,Y ∈ ∅Mm1(X)m2(Y ),

S⊕
3 (A) = S1(A)

P

Z∈DΘ Z /∈ ∅
S1(Z)

∑
X,Y ∈DΘ, X∪Y /∈ ∅, X∩Y ∈ ∅M

m1(X)m2(Y ).

5Note that in a static combination it means a full conflict/contradiction between input BFs. Whereas in the
case of a dynamic combination it could be also a full conflict between mutually non-conflictling or partilally
conflicting input BFs and constraints of a used hybrid DSm model. E.g. m1(θ1∪θ2) = 1, m2(θ2∪θ3) =
1, whereθ2 is constrained in a used hybrid model.
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S⊕
1 (A) corresponds to a non-conflicting belief mass,S⊕

3 (A) includes all classic
conflicting masses and the cases where one ofX,Y is excluded by a non-existential
constraint, andS⊕

2 (A) corresponds to the cases where bothX andY are excluded by
(a) non-existential constraint(s).

It is easy verify that the generalized Dempster’s rule coincides with the classic one
on Shafer’s modelM0, for proof see [6]. Hence, the above definition of the generalized
Dempster’s rule is really a generalization of the classic Dempster’s rule.

5 A generalization of Yager’s rule

The classic Yager’s rule puts belief massm1(X)m2(Y ) to X ∩ Y whenever it is non-
empty, otherwise the mass is added tom(Θ). As all the intersections are non-empty
in the free DSm model, nothing should be added tom1(Θ)m2(Θ) and Yager’s rule
generalized to the free DSm modelMf (Θ) also coincides with the classic DSm rule.
(m1 Y©m2)(A) =

∑
X,Y ∈DΘ, X∩Y =A m1(X)m2(Y ) = (m1 #©m2)(A).

The generalized Yager’s rule of combinationY© for a general hybrid DSm model
M is given as

(m1 Y©m2)(A) =
∑

X,Y ∈DΘ, X∩Y ≡A

m1(X)m2(Y )

for A /∈ ∅, ΘM 6= A ∈ DΘ
M,

(m1 Y©m2)(ΘM) =
∑

X,Y ∈DΘ

X∩Y ≡ΘM

m1(X)m2(Y ) +
∑

X,Y ∈DΘ

X∩Y ∈ ∅M

m1(X)m2(Y )

and(m1 Y©m2)(A) = 0 otherwise, i.e., forA ∈ ∅ and forA ∈ (DΘ \DΘ
M).

To be easily comparable with the DSm rule, we can rewrite the definition of the
generalized Yager’s rule to an equivalent form:(m1 Y©m2)(A) = φ(A)[S Y©

1 (A) +

S Y©
2 (A) + S Y©

3 (A)], whereS Y©
1 (A), S Y©

2 (A), andS Y©
3 (A) are defined by

S Y©
1 (A) = S1(A) =

∑
X,Y ∈DΘ, X∩Y ≡A m1(X)m2(Y ),

S Y©
2 (ΘM) =

∑
X,Y ∈ ∅M

m1(X)m2(Y ), S Y©
2 (A) = 0 for A 6= ΘM,

S Y©
3 (ΘM)=

∑
X,Y ∈DΘ, X∪Y /∈ ∅, X∩Y ∈ ∅M

m1(X)m2(Y ), S Y©
3 (A)=0 for A 6=ΘM.

It is easy to verify that the generalized Yager’s rule coincides with the classic one on
Shafer’s modelM0, for proof see [6]. Hence the definition of the generalized Yager’s
rule is really a generalization of the classic Yager’s rule.

6 A generalization of Dubois-Prade’s rule

The classic Dubois-Prade’s rule puts belief massm1(X)m2(Y ) to X ∩ Y whenever it
is non-empty, otherwise the massm1(X)m2(Y ) is added toX ∪ Y which is always
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non-empty in the DST.
In the free DSm model all the intersections of non-empty elements are always non-

empty, thus nothing to be added to unions and Dubois-Prade’srule generalized to the
free modelMf (Θ) also coincides with the classic DSm rule.
(m1DP©m2)(A) =

∑
X,Y ∈DΘ, X∩Y =A m1(X)m2(Y ) = (m1 #©m2)(A).

In the case of a static fusion, only exclusivity constraintsare used, thus all the
unions ofXi ∈ DΘ, X /∈ ∅ are also out of∅. Thus we can easily generalize Dubois-
Prade’s rule as(m1DP©m2)(A) =∑

X,Y ∈DΘ, X∩Y =A m1(X)m2(Y ) +
∑

X,Y ∈DΘ, X∩Y ∈∅M, X∪Y =A m1(X)m2(Y )

for A ∈ DΘ, A /∈ ∅, and (m1DP©m2)(A) = 0 for A ∈ ∅.
The situation is more complicated in the case of a dynamic fusion, where non-

existential constraints are used. There are several sub-cases howX ∩ Y ∈ ∅ arises,
for detail see [6].

Thus we can now formulate a definition of the generalized Dubois-Prade rule. We
can distinguish three cases of input generalized belief functions: (i) all inputs satisfy
all the constraints of a hybrid DSm modelM(Θ) which is used (a static belief combi-
nation), (ii) inputs do not satisfy the constraints ofM(Θ) (a dynamic belief combina-
tion), but no non-existential constraint is used, (iii) completely general inputs which do
not satisfy the constraints, and non-existential constraints are allowed (a more general
dynamic combination). According to these three cases, we can formulate three variants
of the generalized Dubois-Prade rule.

Thesimple generalized Dubois-Prade rule of combinationDP© is given as6

(m1DP©m2)(A) =
∑

X∩Y ≡A

m1(X) m2(Y ) +
∑

X∩Y ∈ ∅M
X∪Y ≡A

m1(X) m2(Y )

for ∅ 6= A ∈ DΘ
M, and

(m1DP©m2)(A) = 0 otherwise, i.e., forA = ∅ and forA ∈ (DΘ \DΘ
M).

Thegeneralized Dubois-Prade rule of combinationDP© is given as

(m1DP©m2)(A) =
∑

X∩Y ≡A

m1(X)m2(Y )+
∑

X∩Y ∈∅M
X∪Y ≡A

m1(X)m2(Y )+
∑

X∪Y ∈ ∅M
UX∪Y ≡A

m1(X)m2(Y )

for ∅ 6= A ∈ DΘ
M, and

(m1DP©m2)(A) = 0 otherwise, i.e., forA = ∅ and forA ∈ (DΘ \DΘ
M),

whereUX∪Y is disjunctive normal form ofX ∪ Y with all ∩s substituted with∪s.

Theextended generalized Dubois-Prade rule of combinationDP© is given as

6We present here 3 variants of the generalized Dubois-Prade rule, formulas for all of them include several
summations overX, Y ∈ DΘ, whereX, Y are more specified with other conditions. To simplify the
formulas in order to increase their readability, we do not repeat the common conditionX, Y ∈ DΘ in sums
in all the following formulas for the generalized Dubois-Prade rule.
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(m1DP©m2)(A) =
∑

X∩Y ≡A

m1(X) m2(Y ) +
∑

X∩Y ∈∅M
X∪Y ≡A

m1(X) m2(Y )

+
∑

X∪Y ∈ ∅M
UX∪Y ≡A

m1(X) m2(Y )

for ∅ 6= A 6= ΘM, A ∈ DΘ
M,

(m1DP©m2)(ΘM) =
∑

X∩Y ≡ΘM

m1(X) m2(Y ) +
∑

X∩Y ∈ ∅M
X∪Y ≡ΘM

m1(X) m2(Y )

+
∑

X∪Y ∈ ∅M
UX∪Y ≡ΘM

m1(X) m2(Y ) +
∑

UX∪Y ∈ ∅M

m1(X) m2(Y ),

and (m1DP©m2)(A) = 0 otherwise, i.e., forA ∈ ∅ and forA ∈ (DΘ \DΘ
M),

whereUX∪Y is disjunctive normal form ofX ∪ Y with all ∩s substituted with∪s.

It is easy to verify that the generalized Dubois-Prade rule coincides with the classic
one in Shafer’s modelM0, for proof see [6].

The classic Dubois-Prade rule is not associative, neither the generalized one is.
Similary to the DSm approach we can easily rewrite the definitions of the (generalized)
Dubois-Prade rule for a combination ofk sources.

To be easily comparable with the DSm rule, we can rewrite the definitions of the
generalized Dubois-Prade rules to an equivalent form similar to that of DSm:

the generalized Dubois-Prade rule:
(m1DP©m2)(A) = φ(A)[SDP©

1 (A) + SDP©
2 (A) + SDP©

3 (A)], where
SDP©

1 (A) = S1(A) =
∑

X,Y ∈DΘ, X∩Y ≡A m1(X)m2(Y ),

SDP©
2 (A)=

∑
X,Y ∈∅M, UX∪Y ≡A m1(X)m2(Y ),

SDP©
3 (A)=

∑
X,Y ∈DΘ, X∩Y ∈∅M, (X∪Y )≡A m1(X)m2(Y ).

the simple generalized Dubois-Prade rule:
(m1DP©m2)(A) = φ(A)[SDP©

1 (A) + SDP©
3 (A)], whereSDP©

1 (A), SDP©
3 (A) as above;

the extended generalized Dubois-Prade rule:
(m1DP©m2)(A) = φ(A)[SDP©

1 (A)+SDP©
2 (A)+SDP©

3 (A)], whereSDP©
1 (A), SDP©

3 (A) as above,
andSDP©

2 (A) =
∑

X,Y ∈∅M, [UX∪Y ≡A]∨[UX∪Y ∈∅∧A=ΘM] m1(X)m2(Y ).

For proofs see [6].

7 A brief comparison of the rules

As there are no conflicts in the free DSm modelMf (Θ) all the presented rules coincide
in the free DSm modelMf (Θ). Thus the following statement holds:
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Statement 1 Dempster’s rule, Yager’s rule, Dubois-Prade’s rule, the hybrid DSmH
rule, and the classic DSmC rule are all mutually equivalent in the free DSm model
Mf (Θ).

Similarly the classic Dubois-Prade rule is equivalent to the DSm rule for Shafer’s
model. But in general all the generalized rules⊕, Y©, DP©, and DSm rule are different. A
very slight difference comes in the case of Dubois-Prade’s rule and the DSm rule. A
difference appears only in the case of a dynamic fusion, where some focal elements of
both (of all in an n-ary case) the source basic belief assignments are equivalent to the
empty set; an extension of the generalized Dubois-Prade rule is necessary there.

Statement 2 (i) If a hybrid DSm modelM(Θ) does not include any non-existential
constraint or if all the input belief functions satisfy all the constraints ofM(Θ), then
the generalized Dubois-Prade rule is equivalent to the DSm rule in the modelM(Θ).
(ii) The generalized Dubois-Prade rule extended with addition of m1(X)m2(Y ) (or
Πi mi(Xi) in an n-ary case) tom(Θ) for X,Y ∈ ∅M (or for Xi ∈ ∅M in an n-ary
case) is fully equivalent to the hybrid DSmH rule on any hybrid DSm model.

For proofs see [6].

7.1 Open problems

As an open question remains commutativity of a transformation of generalized belief
functions to those which satisfy all the constraints of a used hybrid DSm model with the
particular combination rules. Such a commutation may significantly simplify functions
S2 and hence the entire definitions of the corresponding combination rules.

In the same way as it is used in this paper we can also generalize the non-normalized
conjunctive rule of combination. A generalization of minC combination rule, whose
computing mechanism (not a motivation nor an interpretation) has a relation to the
conjunctive rules on the free DSm modelMf (Θ) already in its classic case [3], is just
under development [5].

We have to also mention the question of a possible generalization of condition-
alization, related to particular combination rules to the domain of DSm hyper-power
sets.

8 Conclusion

The classic rules for combination of belief functions have been generalized to be ap-
plicable to hyper-power sets, which are used in DSm theory. The generalization forms
a solid theoretical background for full and objective comparison of the nature of the
classic rules with the nature of the DSm rule of combination.It also enables us to place
the DSmT better among the other approaches to belief functions.
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The work was partly supported by the Institutional ResearchPlan AV0Z10300504
”Computer Science for the Information Society: Models, Algorithms, Applications”.

References

[1] Cohen M. S. (1986), An expert system framework for non-monotonic reasoning
about probabilistic assumptions, In Kanal, L.N., Lemmer, J.F. (eds.):Uncer-
tainty in Artificial Intelligence 1. North-Holland.

[2] Daniel M. (2000), Distribution of Contradictive BeliefMasses in Combination
of Belief Functions. In: Bouchon-Meunier, B., Yager, R. R.,Zadeh, L. A. (eds.):
Information, Uncertainty and Fusion. Kluwer Academic Publishers 431–446.

[3] Daniel M. (2003), Associativity in Combination of belief functions; a derivation
of minC combination.Soft Computing, 7/5 288-296.

[4] Daniel M. (2004), Algebraic Structures Related to the Combination of Belief
Functions. Scientiae Mathematicae Japonicae,60/ 2 245–255. Scientiae Math-
ematicae Japonicae Online,10501–511.

[5] Daniel M. (2006), A Generalization of the minC Combination to DSm Hyper-
power Sets.Proceedings of IPMU 2006, (In Print).

[6] Daniel M. (2006), Classical Combination Rules Generalized to
DSm Hyper-power Sets and their Comparison with the Hybrid DSm Rule. In:
Smarandache F., Dezert J. (eds.):Advances and Applications of DSmT for In-
formation Fusion, Vol.2, American Research Press, Rehoboth, (In Print).

[7] Dezert J. (2002), Foundations for a New Theory of Plausible and Paradoxical
Reasoning.Information and Security Journal9.

[8] Dubois D., Prade H. (1986), A Set-Theoretic View of Belief Functions.Int. J.
General Systems, 12193–226.

[9] Dubois D., Prade H. (1988), Representation an combination of uncertainty with
belief functions and possibility measures.Computational Intelligence, 4 244–
264.

[10] Haenni R. (2005), Shedding New Light on Zadeh’s Criticism of Dempster’s
Rule of Combination. In:Proceedings of Information Fusion 2005, Philadel-
phia, July 2005.



Milan Daniel 57

[11] Lefevre E., Colot O., Vannoorenberghe P. (2002), Belief Functions Combination
and Conflict Management.Information Fusion3/2 149–162.

[12] Shafer G. (1976),A Mathematical Theory of Evidence. Princeton University
Press, Princeton, New Jersey.

[13] Smarandache F., Dezert J. (2004),Advances and Applications of DSmT for
Information Fusion. American Research Press, Rehoboth.

[14] Smets Ph. (1990), The combination of evidence in the transferable belief model.
IEEE-Pattern analysis and Machine Intelligence, 12447–458.

[15] Yager R. R. (1987), On the Demspter-Shafer framework and new combination
rules. Information Sciences, 4193–138.

MILAN DANIEL was born in Prague in 1962. He graduated in the Faculty of Mathematics
and Physics of Charles University Prague in 1985. He defended his PhD thesis in the Institute
of Computer Science of the Academy of Sciences of the Czech Republic in1993. His research
activities have been always related to the Institute, the department of Theoretical Computer
Science, formerly the department of Knowledge Based Systems, see www.cs.cas.cz. Author’s
current main scientific interests are belief functions, namely combination of belief functions and
probabilistic transformations of belief functions. The other interests are uncertainty processing,
fuzzy logic and knowledge based systems. E-mail: milan.daniel@cs.cas.cz.


